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Solution of the Ornstein-Zernike Equation 
with Yukawa Closure for a Mixture 
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The Ornstein-Zernike equation with Yukawa closure [c~j(r) = K, je- z(,- *~P/r 
for r > ~ ]  for a mixture is solved. We utilize the Fourier transform or 
factorization technique introduced by Baxter. The general solution is 
obtained in the form of algebraic equations. 
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1.  I N T R O D U C T I O N  

In a recent paper, ~1~ the factorization method of  Baxter ~2~ was used to general- 
ize the solution of  the Ornstein-Zernike (OZ) equation with Yukawa closure, 
first obtained by Waisman (3~ and later extended by Waisman, Hoye, and 
Stell (4~ to the case of  an arbitrary number of  exponentials. 

As was shown in this work, (1~ the factorization method leads to an easier 
and more explicit set of  equations, which can be solved more systematically 
than the equations resulting from the analysis of  the Laplace transform. One 
of  the interesting cases to which the Yukawa closure of  the OZ equation 
(GMSA) (5~ has not been applied is the mixture of  hard spheres of  different 
diameters. Another one which is closely related is a "spin-glass," or con- 
figurationally disordered spin system. (6~ For  both systems we have to consider 
the OZ equation for the general mixture of  spherical molecules 

h,,(r) = c,,(r) + ~ p, f dr' c,t(r')h~,([r - r ' l) (1) 

where h,j(r) is the pair correlation function between species i and j ,  c~j(r) is the 
direct correlation function for the same pair, and O, is the number density of  
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species i. Furthermore, the molecules of  our system are spherical with an 
additive hard core ~ .  In other words, we require that 

with 

h~j(r) = - 1  for r < a~ (2) 

This condition prevents the overlap of  the molecules. The closure of the 
problem is of the general form 

c,s(r ) = ~ K~e-~,~r-%)/r for r > ~ij (3) 

where K~ and z, are parameters either given by the problem, which is the 
case of the mean spherical approximation (MSA), <7) in which c~j(r) = -fig~j(r) 
(for r > a~r where ~o~j(r) is the interaction potential, or in the case of the 
GMSA, r where these parameters are determined by either requiring 
thermodynamic consistency between the different ways of calculating the 
thermodynamic properties or use some other input which is considered 
known. The simplest closure of the OZ equation is the Percus-Yevick closure 
for hard spheres, for which c(r) = 0 for r > a~j. The solution of this case was 
first found by Lebowitz, r who used the Wertheim Laplace transform 
method3 9) Baxte6 ~~ rederived and generalized the results of the mixture by 
using his Fourier transform factorization technique. The interesting point 
here is that the factorization technique yields rather general scaling relations 
for all the properties of  the mixture. 

The case of  the general ionic mixture <1~) also admits a quite general 
solution with an interesting scaling property that depends on the ionic 
shielding of the mean field that the individual ions see <~2~ in the fluid. Finally, 
a similar but more complex scaling is possible for the solution of the case of  a 
mixture of arbitrary size ions and dipoles. ~3) 

In the next section we will outline the method of solution, while some 
simple applications will be discussed in Section 3. 

2. METHOD OF SOLUTION 

The procedure used here is essentially a generalization of  our previous 
work for the one-component case31) The OZ equation in Fourier space is 

f~,j(k) = 5,j(k) + ~ p,~,(k)]~zj(k) (4) 
l 

where ~j.(k) and 5~j(k) are the three-dimensional Fourier transforms h~j(r) 
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and c~j(r), respectively, and the sum goes over all the components of the 
mixture. I f  there are no long-range correlations, then/~j(k) < oo for all real 
k, and we can write, following Baxter, ~2am 

a,, - (p~p,)~'2E~,(k) = ~_, Oi,(k)O,,(-k) (5) 

with 8~j as the Kronecker delta. It can then be shown that the components of  
the factor correlation function matrix must be of  the form 

where 

O,j(k) a,j (e,PJ) */~ rj[,~ = -- dr eikrO,y(r) 
Jl 

(6) 

Rij = �89 + Rj), Sij = l(Ri - Rj) (7) 

and Ri is the range parameter of  the direct correlation function, such that 

ci~(r) = 0  for r > Rij 

Equation (6), which is the result of  Liouville theorem type arguments and the 
asymptotic behavior of the Fourier transform, (2'1m tells us that 

Q~r = 0  for r > Rj~, r < Sj~ 

Substitution of (6) into (5) and (4), followed by Fourier inversions, leads to 
the set of  coupled equations 

2rrrc,,(r) = Q;j(r) + ~ p, ( Qj,(t)Q~l(r + t )dt  (8) 
d 

for S z < r < Rj~, and 

2rrrh,,(r) = - Q',,(r) + 2 , r ~ p ,  f d t ( r -  t )h, , ( lr-  tl)Q,,(t ) (9) 

for r > Sj~, where the range of  the integrals is determined by the range of  
Q~j(r), and its derivative Q;j(r). 

The solution of the given problem consists in finding the explicit form of  
the factor correlation functions Q~j(r). For our problem as given by (2) and 
(3) this can be done, in spite of  the fact that the range Ri ---> m, because either 
from the asymptotic behavior or by contour integration, (.4~ we deduce from 
(5) or (8) that [for r > Ssi = �89 - ~)] 

Q,:(r) = Q~(r) + ~, O~.e-*. r (10) 
n 

where again D~j is a constant, and Q~ = 0 for r > ~,j. 
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However, for notational simplicity we will from here on drop the index n, 
i.e., we keep only one Yukawa term in (3) or one exponential in (10), since 
the generalization to a sum of such terms is obvious, m The form of Q~ is 
found from Eq. (9) and condition (2). Notice that the crucial part of  the 
solution is the short-range property of Q~ which closes Eq. (9). An 
inspection of  this equation will then show that 

a ~  = � 8 9  -2 ,, e~j) qis + (r - a,j)qtj + Gs(e -~r - e-~%) (11) 

for 

as~ < r < ~rji with a~,~ = �89 - ~) (12) 

The form of (11) is chosen so as to satisfy the continuity of Q~ ) at r = %., 
a condition which follows from Eq. (8). 

The problem is now to find algebraic equations that determine the 
coefficients q,'~., q,'j, C,j, and D~3.. By considering (9) for r < ~,i we obtain 
directly three sets of equations when the core condition (2) and Eqs. (10) and 
(11) are utilized. The constant term and the coefficient of the r term then give 
the following two sets of  equations: 

A, = q,';- = 27r[1 - ~ o,Tlj] (13) 
l 

By = -e,Jq,5 + q~J = 2rr ~ p ,T f  (14) 
l 

where we have defined the moments 

with 

T~ = dt t~Q~j(t) = - ,j(s) (15) 
t2 s = 0  

O.,j(S) = dt e- ' tQ,  j(t) (16) 
j i  

Using the explicit form (10) and (11) of Q~j(r), some calculation will show 
that 

(1 - ~ - 3 ~ j ~ ) &  - 6GBj = 2,~(1 + M 3  

{as2~2Aj + (1 - ~s + 3af2)Bj = 27rNj 

with 

l 

Mj = ~ the-a~" zez2e .... 'qol(-z~h)Cls - Dis 

N s = ~ ple-a,'~ze-~'ch2[~r,~2( - zcr 3 -- t j ,ch(-ze3]C, ,  + 
"T" k 

(17) 

( 1 8 )  

(19) 

(20) 

1 + ztjt ) 
z 2 Dzj 

Y 

(21) 
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where we have used the incomplete gamma functions 

~q(x) = (l/x2)(1 - x - e-X), ~o2(x) = (1/xa)(1 - x + �89 2 - e -x)  

(22) 

Solutions of  Eqs. (17) and (18) with respect to Ay and By leads to 

Aj = Ay~ + My) - 4(1/%2)Bl~ 
(23) 

By = B9(1 + My) + [Ay ~ + 4(1/~r176 

or  f rom (13) and (14) 

q~'y = q~'(1 + My) + A,~ (24) 

where the superscript zero denotes the Percus-Yevick hard-core system. We 
recall tha t  

q o. = [2r - ~a)2][%,~f= + %(1 - ~a)] 

Ay ~ = [2rr/(1 - ~:a)21(1 - ~a + 3~f2)  (25) 

As we will see in the next section, both  q'y and Aj are simply related to 
physical properties of  the system. 

The  coefficient o f  the e-*r term of  Eq. (9) gives a third set o f  equations. 
We then find it convenient due to the core condit ion (2) to replace h,y(r) by 

&j(r) = h,j(r) + 1 (26) 

and we obtain 

- G j  = ~ [8, - 2rrp,~,,(z)/z]Dzj (27) 
l 

where the Laplace t ransform of  g~j(r) is given by 

s = dr e-~rr&y(r) (28) 

Now we have reduced the set o f  unknowns  by eliminating q~}, q~'t, and 
C~y, but  we still have to find two additional sets o f  equations for  D~j. and 
~o.(z). One set of  equations is obtained from Eq. (8). In particular,  if r > %., 

2rrK~j/z = ~ D,[8,j  - p,0.j,(z)] (29) 
l 

The other  set of  equations is obtained f rom Eq. (9) by considering its Laplace 
transform. For  r < my Eq. (9) reduces to 

' r  ~ s  0 = 2~rr - Q.~y( ) - 2rr Pz dt (r - t)Qlj(t) 
J~ 

+ 2rr ~.  p, dt (r - t)g~z(Ir - t l)Q~j(t ) (30) 
-7 
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which leads to Eqs. (13), (14), and (27), while for r > ~s we should have 

f; 2rrrgij(r) = 2~rr + zD~ie . . . .  2~r ~ ,  Pl dt (r - t )Qzj( t )  
i tz 

f; + 2~r ~ ,  p~ dt (r - t ) g . ( I r  - t l)Q~j(t ) (31) 
l 

We then find it advantageous to take the analytic continuation of (30) for 
r > e~j. and subtract it from (31) to obtain 

H ! 27rrg~j(r) = (r - ~ j ) q .  + q~j - zC~je - ~  

f2 + 2rr ~ p~ dt (r - t)g~([r - t l)Q,~(t) (32) 
l ~t 

But this is nothing but a simple convolution integral equation, which by 
Laplace transformation yields 

2~r~(s)[3~j - p~O.~(s)] = - - - 7 -  q~ + sq~ - ~ e 
s + z  

with 0~(s) defined by (16). When s = z we get expressions for ~(z), which 
give the remaining set of equations. 

Summarizing, we have a set of two coupled matrix equations. One of 
them is Eq. (29), while the ~)ther one is Eq. (33) when q~'~, q~, and C~ are 
substituted by (13), (24), (25), and (27) to give 

- 

= e - ~ , { ( A ~ ~ 1 7 6  ( - 4  1-~r~ B~ ~ + zA ,  ~ N~ 

where 

z2 } 
+ ~- e-~% ~ y~zD~j (34) 

~,~j = 3~j - 27rpj~j(z)z  (35) 

From (20), (21), and (27) we then get 

M~ = - ~  o ~ e - ~ ,  z ~ 2 e - " ~  + ~ D~j 

N ,  
l , k  k 

+ -----'-i--1 + zAjz 3t~'~Dk j J  (36) 
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and from (11) 

O~ = e-~a,~{(1 + My)a,2[q~l(za,)q~'+ ~ri~2(gcri)Aj ~ 

1 e_~Xj~(1 e_~02 2z - ~ 7~,D,y) (37) 

Although the equations appear to be algebraically complex, there are only 
two sets of unknowns, e.g., the 7~j [or ~j(z)] and the D~j if the K~j (besides 
z, p~, and a~) are considered known. It may be noted that the set of equations 
(34) is linear in D~j and thus has a unique solution with respect to D~j when the 
7~j are considered known, and (29) will then give K~j explicitly. However, 
with K~j instead of 7~J as known one must expect multiple solutions to occur, 
of which only one is acceptableJ 4) 

3. DISCUSSION 

The results of the preceding section can be used to compute properties of 
physical interest of the system under consideration. There are often different 
ways of calculating these properties, and what we want to do in this section is 
to survey some of the simpler relations to the factor correlation functions 
Qij(r). First, we conclude from Eq. (9) that the contact value of g~j(r) is 
determined by the jump of Q~j(r) at r = a~. We have 

1 
gij(crij +) = ~ [q~'~ - zC~je- ~%] (38) 

It is also clear that, from (5), (6), and (13), the inverse compressibility via the 
fluctuation theorem is 

X -~ eflp _ 1 1 ~ p, pje, j(O) = 1 ~ [Aj'~ 2 
- 8p - p  *, P J p j ~ ]  (39) 

where p is pressure and p = ~ p~. 
In passing, we also notice that a physical requirement on g~j(r) is the 

exchange symmetry 

g,j(r) = gy,(r) (40) 

From (24) and (38) this implies that any acceptable solution of the equations 
of the last paragraph must satisfy 

q~ + AflNj - zC, je-Z~ = q~'M, + As~ - zCj,e-Z~,, (41) 
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In  the MSA we find a simple expression for the excess internal energy AE per 
unit  volume, which is given by 

- [3 A E  = 2rr .~. p~pjK~S,f~,~i(z ) (42) 
Z,J 

The recent work of  Hoye  and StelF 15) can be used to compute  the excess 
thermodynamic  properties in the M S A  via the internal energy. We quote the 
" e n e r g y "  excess osmotic coefficient 

CE ripe 1 , 2 
= p -- 127rp ~ P~PW~[(q~) -- (qO,)2] + j (43) 

where in the present case with Yukawa  interaction the virial integral becomes 

.. ~ f [  8~ij(s)h - ~j(z)]  (44) 

The excess free energy is then given by 

- f i A A  = p A r  ~ - f i A E -  �89 -1 - Xg 1] (45) 

where Xff ~ as defined by (39) is the inverse compressibility o f  the hard-core 
reference problem. Finally, the excess chemical potential tz~ E of  particle i in 
the MSA is 

--fipd~fi = �89 ~ p,pj[g~j(0) -- g~(0)] q- 2rr ~ p, pyK~je~a,,~y(z) (46) 
J Y 
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